Феофан это бот, умеющий рассуждать логически на русском языке ФРЯ Например, если Феофану сообщить, что все люди смертны, а Сократ это человек, то он сообразит, что Сократ тоже смертен. См. Примеры

Wednesday, January 4, 2017

познание сложного в промежутке между нулём и бесконечностью

критерий сложности - модель (описание) сложного сложней сложного

т.е. лучшей моделью и простейшим описанием сложного объекта (явления) является сам сложный объект (явление)

полагая феномен сознания сложным явлением, бессмысленно пытаться его "моделировать"

нам легче понять ту материю (физику) и те явления, которые порождают феномен нашего личного сознания (т.е. понять законы природы и эволюцию Вселенной, приводящих к появлению живых мыслящих людей - т.е. нас любимых) с помощью "первичности", "простоты" в плане понимания себя любимых, "очевидности" данного нам нашего индивидуального сознания

например, память - это феномен времени - прошлое и будущее в настоящем (иногда забывается и-или путается с воображением, сном, фантазией, мечтой)

тело - это скоординированные пространство, протяженность и нелокальность - но в меру (всё имеет естественные размеры)

язык (врожденный дар, правила говорения, своего рода "закон") - врожденная способность узнать "истину" когда она попадется "на глаза" (например, отличить правильное высказывание от ошибочного)

смысл сознания - говорить на языке в поиске и формулировании "истины" (созидание универсального, "правильного" текста) т.е. передвижение материальных объектов "по закону" с целью конструирования "истинного" материального мира  ("правильного" текста на "языке")


обнаружив себя (свое тело и сознание) в промежутке между миллиардами (как минимум) лет в прошлом и будущем, между недостижимым огромным космосом и неуловимыми частичками собственного тела мы имеем шанс применить математику, умеюшую оперировать объектами, уходящими в бесконечность как в малое так и в большое, например - ПэЧэ (p-адическими числами)

Пример выполнения арифметических операций над 5-адическими числами.



Пример выполнения деления 5-адических чисел.




приятно знать, что есть инструмент познания тонкой но ненулевой границы между недостижимыми бесконечно большим и бесконечно малым, между забытым прошлым и неизвестным будущим

за p-адический анализ!
ура!!!

:-)





Информация физична?


С.И. Доронин, Квантовая магия
http://quantmag.ppole.ru/QuantumMagic/Doronin1/34.html


3.4. Физика информации

...................

Суть квантовой информации и одновременно ее исключительная особенность — в том, что эта физическая величина как нельзя лучше подходит на роль «первичной субстанции всего сущего». О самом определении мы поговорим чуть позже, а сейчас — еще несколько слов о векторе развития науки, точнее, об общих тенденциях и трансформации взглядов ученых на окружающую реальность, а также на ту роль, которую играют в ней те или иные физические процессы. Вот как пишет об этом Б. Киви в статье «Инфо-космо-логия»*:
«Все больше теоретиков считают, что ключевой идеей, ведущей к „великому объединению“ гравитации и квантовой теории, может стать переформулирование взглядов на природу не в терминах материи и энергии, а в терминах информации».
Одним из первых об этом заговорил патриарх американский физики, великий Джон Арчибальд Уилер (подаривший миру, среди прочего, любопытный термин «черная дыра»). Вот как он пишет в своей автобиографии о роли информации [John Archibald WheelerGeonsBlack Holes & Quantum Foam: A Life in PhysicsNew York, W. W. Norton & Company, 1998. Р. 63–64], опубликованной несколько лет назад:
«Моя жизнь в физике представляется мне разделенной на три периода. В первый из них, растянувшийся с начала моей карьеры и до начала 1950-х годов, я был захвачен идеей, что „всё — это частицы“. Я искал способы выстроить все базовые элементы материи (нейтроны, протоны, мезоны и т. д.) из самых легких, наиболее фундаментальных частиц — электронов и фотонов.
Второй период я называю „всё — это поля“. С тех пор, как я влюбился в общую теорию относительности и гравитацию в 1952 году, и вплоть до недавнего времени, я придерживался взгляда на мир, как на состоящий из полей. Мир, в котором то, что представляется нам частицами — это в действительности проявления электрических и магнитных полей, гравитационных полей и самого пространства-времени.
Теперь же я захвачен новой идеей: „Всё — это информация“. Чем больше я размышляю о квантовых тайнах и о нашей странной способности постигать тот мир, в котором мы живем, тем больше вижу, вероятно, фундаментальное значение логики и информации как основы физической теории».

* Источник «Компьютера» http://offline.computerra.ru/2004/544/33769/index.html.

Неплохо сказал об этом П. Дэвис в своей статье*: «Обычно мы думаем о мире, как о составленном из простых, подобных сгусткам, материальных частицах, и под информацией понимаем производную характеристику объекта восприятия, относящуюся к особого рода организованным состояниям вещества. Но возможно, что все наоборот: похоже, что Вселенная на самом деле — шалость первичной информации, а материальные объекты являются ее сложным вторичным проявлением».

Davies P. Bit before it? (1999), New Scientist, 161 (2171), p. 3.

Материальный мир как «шалость первичной информации» — хорошо сказано! Действительно, в квантовой теории весь классический домен составляет лишь незначительную часть совокупной Квантовой Реальности, далеко не самую главную и значимую. Материальный мир вовсе не является основой реальности, и его вполне можно считать результатом «шалости» информационных процессов, происходящих на фундаментальном уровне в нелокальном источнике реальности.
Свою статью П. Дэвис заканчивает словами: «Если информация действительно должна заменить материю как самая первейшая субстанция Космоса, то нас может ожидать еще большая награда. <...> С современной точки зрения, мозги (материя) рождают мысли (ментальную информацию). <...> Но если материя является формой организованной информации, то тогда и сознание уже не так таинственно, как нам казалось»*.

Цит. по книге: Лем С. Мегабитовая бомба // Компьютера. 2001. № 18 (395). http://old.computerra.ru/online/firstpage/bl/9423/.

Замечу, что в настоящее время уже есть понимание физических процессов (декогеренции), в результате которых появляется материя как «форма организованной информации».

.....

Имея дело с классической информацией, мы разделяем саму информацию и физический носитель. В результате чего можем лишь приспособить какой-либо материальный объект для хранения (передачи) определенного количества «классической» информации. Получается, что без материального носителя информация не может существовать. Поэтому и возникают иногда вопросы, где содержится квантовая информация, и что является ее носителем? В квантовой теории с этим как раз все просто и ясно: поскольку информация здесь — это физическая величина, характеризующая систему, то сама система и является носителем квантовой информации. Это все равно что спросить: а где содержится масса физического тела? Да в нем самом эта масса и содержится, поскольку является одной из количественных характеристик данного тела.


................


... квантовая информация является самой фундаментальной количественной характеристикой системы, поскольку для ее определения нет необходимости вводить дополнительные соображения о том, какие еще физические величины (операторы) характерны для данной системы. Квантовая информация как мера существует всегда, если есть система, независимо от того, в каком состоянии она находится. Информация сама по себе является физической сущностью и существует даже тогда, когда система находится в нелокальном состоянии, поэтому ее можно считать «первичной субстанцией», из которой в процессе декогеренции могут «проявляться» локальные объекты. «Информация физична» в прямом смысле — она является источником всех других физических процессов и материальных проявлений, которые могут иметь место в системе. Отсюда и более высокий статус квантовой информации относительно других физических величин, которые мы могли бы дополнительно привлечь для описания системы. А поэтому выше и значимость закона сохранения квантовой информации по сравнению с другими законами сохранения (массы, энергии, импульса и т. д.)

..........

Квантовая теория информации таким образом непосредственно связывает информацию с энергией через энтропию фон Неймана, которую можно считать основной физической характеристикой энергоинформационного процесса. Изменение информации сопровождается изменением энергии, а обмен информацией напрямую связан с обменом энергией (справедливо и обратное) — это еще один важный вывод, который сделан в физике квантовой информации.
Есть и отдельные строгие результаты, связывающие информацию, энергию и энтропию. В частности, теорема Марголюса-Левитина* утверждает, что число элементарных логических операций, которые физическая система может выполнить в единицу времени, ограничено энергией системы, а количество информации, которую система может зарегистрировать (воспринять), ограничено ее собственной максимальной энтропией**.

Margolus N. and Levitin L. B., in PhysComp96, Proceedings of the Fourth Workshop on Physics and Computation, edited by Toffoli T., Biafore M., and Leão J. (New England Complex Systems Institute, Boston, 1996); Physica (Amsterdam) 120D, 188–195 (1998).
** Lloyd S. Nature (London) 406, 1047–1054 (2000); Landauer R. Nature (London335, 779–784 (1988).

Прямая связь между энергией и выполняемыми логическими операциями (информационными процессами) позволяет перекинуть мостик к физическим процессам, сопровождающим работу сознания, поскольку она непосредственно связана с логическими операциями.
...

Monday, January 2, 2017

ПэЧэ или P-адические числа

Господин ПэЖэ. Принадлежит к касте Чатлан. Носит голубые штаны. Не очень злобен. Чтобы его задобрить, достаточно вставить в нос цак и раз десять сделать «Ку!» (по уточнённым данным — от 8 до 12 раз). Раньше он жил со своей мамой на планете Плюк в галактике Кин-дза-дза. Радовался жизни, делал кислую физиономию, издавал приказы вида «Всем пацакам надеть намордники и радоваться!» В общем, вёл обычную жизнь обычного губернатора планеты. Но однажды, когда в Годвилле ещё существовало пиво, и некропетровские физики пили его с демиургами, они решили поставить ненаучный эксперимент и под шумок набили в трубку одному из Творцов несколько грамм элементарных частиц вместо табака. Никто не знает, почему появился именно господин ПэЖэ (может быть, потому что демиург прикуривал не чем-нибудь, а самым настоящим КЦ, сиречь спичками), и неизвестно, что было дальше, но проснулись они утром без спичек, с цаками в носу и в серых штанах. А сам господин ПэЖэ довольно быстро освоился в новом для него мире. Теперь он ходит по дорогам и просит закурить. Если кто-либо достаёт спички — он их отбирает и, в случае претензий со стороны потерпевшего, грозится применить транклюкатор. Никто не знает, что это такое, поэтому все боятся.
                                                                          https://wiki.godville.net/Господин_ПэЖэ 

"In physical science the first essential step in the direction of learning any subject is to find principles of numerical reckoning and practicable methods for measuring some quality connected with it. I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of Science, whatever the matter may be." [PLA, vol. 1, "Electrical Units of Measurement", 1883-05-03]
                                                                                           http://zapatopi.net/kelvin/quotes/ 



Хренников А.Ю. Моделирование процессов мышления в p-адических системах координат


....


Только в Х1Х веке, благодаря работам Кантора и Дедекинда, было создано строгое математическое описание вещественных чисел. Заметим, что камнем преткновения являлись иррациональные числа ъ'2,«г,... Реальность рациональных чисел, представляемых отношениями целых чисел, не вызывала больших сомнений. Таким образом, основной проблемой являлось расширение (пополнение) множества рациональных чисел 1) до множества вещественных чисел В.. Иррациональные числа не могут быть описаны с помощью конечных процессов. Здесь действительно возникает элемент иррациональности. Интересно, что П.А. Флоренский сравнивал процесс построения иррационального числа с процессом «приближения к Богу». Вообще, можно согласиться с высказыванием А Пуанкаре: «В итоге можно сказать, что разум обладает способностью создавать символы; благодаря этой способности он построил математическую непрерывность 1т.е. поле вещественных чисел), которая представляет собой только особую систему символов» ).

В дальнейшем нас будет серьезно интересовать следующий вопрос: «Является ли поле вещественных чисел В. единственным «естественным» расширением поля рациональных чисел 1)7» Мы увидим, что существуют другие расширения поля 1), а именно — поля р-адических чисел 1)р, которые возникают не менее естественно, чем В.. Таким образом, отталкиваясь от рациональных чисел, разум может создавать и другие системы символов, отличные от вещественных чисел. В этой книге предлагается использовать эти новые системы чисел — р-адические числадля описания разума ). Но пока вновь вернемся к описанию мира с помощью вещественных чисел.
-----------------------------------------
') Подробное обсуждение становления реалистического взгляда на вещественные числа можно найти в книге П.А. Флоренского 175).
з)Пуанкаре А. О науке. — Ме Наука, 1983.
з) Конечно, возникает весьма интересная проблема, которая на протяжении столетий обсуждается философами, психологами, нейрофизиологами, логиками, математиками: «Может ли разум в принципе создать систему символов, описывающую его самого)» В целом предлагаемая книга дает положительный ответ на этот вопрос.


....


Владимиров и Волович выразили в четкой математической форме неясные представления о неархимедовости 1и неупорядоченности) пространства в микромире, витавшие на протяжении десятилетий в космологии, теории гравитации и теории струн. С другой стороны, Владимиров и Волович впервые четко обозначили роль рациональных чисел в физике и отделили использование рациональных чисел от более общих вещественных. В традиционной классической физике рациональные числа никогда не выделялись, все процессы рассматривались в В.. Впервые было подчеркнуто, что лишь рациональные числа являются физическими числами. Действительно, в любом эксперименте можно измерить лишь конечное число знаков после запятой.








=================================================================
=================================================================



Анри Пуанкаре
О НАУКЕ



....................

Физическая непрерывность. Итак возникает вопрос, не заимствовано ли понятие математической непрерывности просто из опыта. Если бы это было так, то это означало бы, что данные непосредственного опыта, каковыми являются наши ощущения, доступны измерению.
Может явиться искушение поверить, что это и в самом деле так, потому что в последнее время пытались измерить их, и был даже сформулирован закон, известный под именем закона Фехнера, по которому ощущение пропорционально логарифму раздражения.  {28} 
Но если ближе присмотреться к опытам, которыми пытались обосновать этот закон, то можно прийти к совершенно противоположному заключению. Например, было замечено, что вес A, равный 10 граммам, и вес B, равный 11 граммам, производят тождественные ощущения, что вес B нельзя отличить от веса C, равного 12 граммам; но что вес A можно легко отличить от веса C. Таким образом, непосредственные результаты опыта могут быть выражены следующими соотношениями:

A = B,    B = C,    A < C,

которые можно рассматривать как формулу физической непрерывности. Эта формула заключает в себе недопустимое разногласие с законом противоречия; необходимость избежать его и заставила нас изобрести идею математической непрерывности.
Итак, необходимо заключить, что это понятие всецело создано разумом, но что опыт доставил ему повод для этого.
Мы не можем допустить, что два количества, равные одному и тому же третьему, не равны между собой; и это обстоятельство вынуждает нас предположить, что A отличается от B и B от C, но несовершенство наших чувств не позволило нам этого заметить.





.....................


Различные замечания. Мы можем поставить перед собой несколько важных вопросов:
1. Исчерпывается ли творческое могущество разума созданием математической непрерывности?
Нет: труды Дюбуа-Реймона служат поразительным доказательством этого.
Известно, что математики различают бесконечно малые разных порядков, так что бесконечно малые второго порядка не только бесконечно малы в абсолютном смысле, но еще и являются таковыми по отношению к бесконечно малым первого порядка. Нетрудно представить себе бесконечно малые дробного и даже иррационального порядка, и, таким образом, мы снова находим ту последовательность математической непрерывности, которой посвящены предшествующие страницы. Более того: существуют такие бесконечно малые величины, которые бесконечно малы по отношению к бесконечно малым первого порядка и, напротив, бесконечно велики по отношению к бесконечно малым порядка 1 + ε, как бы ни было мало ε. Итак, вот еще новые члены, разместившиеся в нашем ряду; и если мне будет позволено вернуться к терминологии, которой я недавно держался и которая является достаточно удобной, хотя еще и не используется широко, я скажу, что этим создан вид непрерывности третьего порядка.
Легко было бы идти дальше, но это было бы бесполезной игрой ума; пришлось бы воображать себе одни символы без возможности их применения; на это никто не отважится. Даже непрерывность третьего порядка, к которой приводит рассмотрение различных порядков бесконечно малых, сама по себе является слишком мало полезной, чтобы приобрести право быть упоминаемой, и геометры рассматривают ее только просто как курьез. Разум пользуется своей творческой силой только тогда, когда опыт принуждает его к этому.
2. Раз мы обладаем понятием математической непрерывности, гарантированы ли мы от противоречий, аналогичных тем, которые положили начало этому понятию?
Нет; и я сейчас дам этому пример.
Надо быть очень сведущим, чтобы не считать очевидным, что каждая кривая имеет касательную:  {34}  и в самом деле, если представлять себе эту кривую и некоторую прямую как две узкие полосы, то всегда можно расположить их так, что они будут иметь общую часть, не пересекаясь. Теперь вообразим себе, что ширина этих двух полос бесконечно уменьшается; существование их общей части будет всегда возможным, и в пределе, так сказать, две линии будут иметь общую точку, не пересекаясь, т. е. они будут взаимно касаться друг друга.
Геометр, рассуждающий таким образом, сделал бы — сознательно или нет — то же самое, что мы сделали раньше, желая доказать, что две пересекающиеся линии имеют общую точку; и его интуиция могла бы показаться такой же законной.
Между тем она его обманула бы. Можно доказать, что существуют кривые, не имеющие касательных, если эта кривая определена как аналитическая непрерывность второго порядка.
Несомненно, какая-нибудь уловка, аналогичная раньше изученным нами, позволила бы устранить противоречие, но так как оно встречается только в весьма исключительных случаях, то им и не занимаются. Вместо того чтобы стараться примирить интуицию с анализом, удовольствовались тем, что пожертвовали одним из двух; и так как анализ должен остаться непогрешимым, то всю вину отнесли на счет интуиции.