Феофан это бот, умеющий рассуждать логически на русском языке ФРЯ Например, если Феофану сообщить, что все люди смертны, а Сократ это человек, то он сообразит, что Сократ тоже смертен. См. Примеры

Wednesday, January 4, 2017

познание сложного в промежутке между нулём и бесконечностью

критерий сложности - модель (описание) сложного сложней сложного

т.е. лучшей моделью и простейшим описанием сложного объекта (явления) является сам сложный объект (явление)

полагая феномен сознания сложным явлением, бессмысленно пытаться его "моделировать"

нам легче понять ту материю (физику) и те явления, которые порождают феномен нашего личного сознания (т.е. понять законы природы и эволюцию Вселенной, приводящих к появлению живых мыслящих людей - т.е. нас любимых) с помощью "первичности", "простоты" в плане понимания себя любимых, "очевидности" данного нам нашего индивидуального сознания

например, память - это феномен времени - прошлое и будущее в настоящем (иногда забывается и-или путается с воображением, сном, фантазией, мечтой)

тело - это скоординированные пространство, протяженность и нелокальность - но в меру (всё имеет естественные размеры)

язык (врожденный дар, правила говорения, своего рода "закон") - врожденная способность узнать "истину" когда она попадется "на глаза" (например, отличить правильное высказывание от ошибочного)

смысл сознания - говорить на языке в поиске и формулировании "истины" (созидание универсального, "правильного" текста) т.е. передвижение материальных объектов "по закону" с целью конструирования "истинного" материального мира  ("правильного" текста на "языке")


обнаружив себя (свое тело и сознание) в промежутке между миллиардами (как минимум) лет в прошлом и будущем, между недостижимым огромным космосом и неуловимыми частичками собственного тела мы имеем шанс применить математику, умеюшую оперировать объектами, уходящими в бесконечность как в малое так и в большое, например - ПэЧэ (p-адическими числами)

Пример выполнения арифметических операций над 5-адическими числами.



Пример выполнения деления 5-адических чисел.




приятно знать, что есть инструмент познания тонкой но ненулевой границы между недостижимыми бесконечно большим и бесконечно малым, между забытым прошлым и неизвестным будущим

за p-адический анализ!
ура!!!

:-)





2 comments:

  1. медленно ползёт улитка по склону Межпредметных семинаров

    Межпредметный семинар 14.02.2007
    В среду 14 февраля 2007 г. в 18:30 в аудитории 115КПМ состоится 1й в новом семестре межпредметный семинар по теме:
    p-Адический анализ и приложения в физике и биологии
    Докладчик:
    д.ф.-м.н. Козырев Сергей Владимирович (Математический институт им. В.А.Стеклова РАН)
    http://www.mi.ras.ru/~kozyrev/

    https://mipt.ru/education/chair/theoretical_physics/subscription/RassylMejPred/mejprs14feb2007.php

    ReplyDelete
  2. про p-адические числа у Вольфрама
    http://mathworld.wolfram.com/p-adicNumber.html

    ReplyDelete